
An analysis of adaptive video streaming with DASH
Max Crone

max.crone@aalto.fi

Jack Henschel

jack.henschel@aalto.fi

Abstract—In this report we investigate the behaviour of Adap-
tive Bitrate Streaming with the DASH protocol under different
network conditions with regard to video quality and fairness
between clients. We found that the adaption to static and
changing network conditions works quite well to always provide
clients with the highest possible video quality while minimizing
buffering delays.

Index Terms—video, adaptive, streaming, dash

I. INTRODUCTION

In recent years, the MPEG-DASH standard has unified
the previously diverse and proprietary landscape of Adap-
tive Bitrate Streaming formats. Adaptive Bitrate Streaming
greatly enhances the Quality of Experience (QoE) for the
user because the video quality dynamically adjusts to network
conditions, thus it reduces buffering delays and at the same
time maximizes quality for the user. With MPEG-DASH,
video streaming providers need to re-encode videos into
multiple qualities and create a so-called “manifest file” that
contains metadata about the video, of which the URLs of
the different quality segments are the most important. The
DASH manifest is commonly stored in a .mpd file (Media
Presentation Description) and is formatted as XML. The
client (e.g. web browser or mobile device) will then use the
information from the manifest to download the required audio
and video segments. In the first part of this report we set up
a streaming server, streaming client, and preprocess a video
file so it can be used for Adaptive Bitrate Streaming. Then, in
the second part, we evaluate how the adaptation behaves in a
variety of network conditions.

II. EXPERIMENTATION SETUP

Firstly, we obtained a high-quality video from the Blender
Foundation with which we are going to conduct our experi-
ments: “Big Buck Bunny Trailer” [1]. To have a video with
sufficient length, we looped this video multiple times which
resulted in a total length of 5 minutes and 30 seconds.

A. Transcoding

Next, we looked for tools to transcode our original input
video with different quality settings. FFmpeg is the Swiss
army knife of video encoding and packaging. It supports
all commonly used formats, containers and codecs and is
available under a Free Software license [2]. Thus it was a
natural choice for the transcoding process.

The most important aspect for encoding is to align the
keyframes between all the qualities. Keyframes contain the
entire picture of a video without reference to any other frames

Fig. 1. Transcoding command for FFmpeg

ffmpeg -y -i "$VIDEO" \
-c:v libx264 \
-x264opts ’keyint=24:min-keyint=24:no-scenecut’ \
-b:v 700k -maxrate 700k -bufsize 500k \
-vf "scale=-1:480" \
low.mp4

of the video. As they incorporate all of the information about
the pixels in each image, they take up a lot more space and are
much less frequent than the other types of encoding frames.
After encoding, the video needs to be divided into short
segments where each segment has to start with a keyframe.
If the keyframes across different qualities of the same video
are not aligned, the lengths and positions of the segments
will not match, making a fluent transition from one quality
to another one impossible. Thus, all video qualities have to
contain regular keyframes.

Figure 1 shows an example command of how to encode the
original video with FFmpeg. We specify the input file with
-t, set the encoder to “x264”, the encoding options ensure
there is a keyframe every 24 frames (one per second), the
desired bitrate (in this case 700 kb/s), the resolution of the
output video (here the height is given with 480 pixels and the
width will be automatically determined) and finally the output
file.

Using this command, we converted the original source into
three different videos according to the settings in Table I.

TABLE I
QUALITY SETTINGS FOR EACH VIDEO

Quality Bitrate (kb/s) Resolution (pixels) Filesize (MB)
Original 7000 1920x1080 295
Low 700 960x540 20
Medium 1500 1280x720 41
High 2500 1920x1080 69

B. DASH Manifest

The next step is to package the video file for the clients and
generate the DASH manifest. For this we used the MP4Box
tool by GPAC which can be used to (among other features)
prepare HTTP Adaptive Streaming content [3]. Given the
duration for each DASH chunk and the (already encoded) input
videos, MP4Box will repackage the videos into a different
container and generate the DASH manifest.

C. Web server

The final step is uploading the generated output files to a
web server. First we experimented with Google Cloud Storage
which provides a simple object storage interface and makes
the content available on the internet. However, we found that
the aggressive caching of this service made our measurements
unreliable. Therefore we set up our own Nginx web server on
a Google Cloud Compute instance. This gives us total control
over the server settings as well as letting us control the network
environment.

It is important to set the correct Cross-Origin Resource
Sharing (CORS) headers for the web server, otherwise modern
web browser will refuse to load the video segments. For
DASH, the “Content-Type”, “Origin” and “Range” headers
need to be allowed for HTTP GET, HEAD and OPTIONS
methods.

D. DASH client

To ensure all clients (including mobile browsers and older
devices) can access the DASH content, we used version 3.0.0
of the dash.js library. It is a reference implementation of
an MPEG-DASH client in JavaScript developed by the Dash
Industry Forum [4]. The JavaScript library simply needs to be
given an HTML <video> element along with the URL of
the DASH manifest and will then start fetching the appropriate
video segments specified in the manifest file. Optionally,
more configuration options can be supplied to the library via
JavaScript.

Putting all these components together, we end up with the
files listed in Table II on our web server.

TABLE II
WEB SERVER FILES

Filename Description
index.html Website
dash.all.min.js DASH JavaScript Library (minified version)
high_dash.mp4 High quality video stream
low_dash.mp4 Low quality video stream
medium_dash.mp4 Medium quality video stream
output_init.mp4 Video initialization file (contains metadata)
output.mpd DASH Manifest (Media Presentation Description)

III. ANALYSIS UNDER DIFFERENT NETWORK CONDITIONS

In this section we will conduct analyses by streaming
the video under different network conditions and observing
the resultant performance of the DASH client. We will also
conduct a comparison between multiple clients streaming
simultaneously in order to analyze fairness.

A. Data collection

In order to collect metrics on the playback we use methods
provided by the reference DASH client implementation. These
provide us with the current video quality, a video timestamp
and the buffer level in seconds.

The quality of a segment is expressed in a number. These
values over time are plotted together with the buffer level in

the same graph such that observing relations between these
different metrics becomes more intuitive. Table III gives the
interpretations for the three levels of video quality.

TABLE III
LEVELS OF VIDEO QUALITY

Level Quality
0 Low
1 Medium
2 High

In order to be able to throttle the client’s network connec-
tion, we made use of the Firefox Developer Tools. Out of the
box, it provides profiles to emulate various network conditions.
Table IV lists the names of the profiles we used as well as their
performance characteristics. We did not list the upload speed
since this metric is mostly irrelevant for video streaming from
the perspective of the client.

TABLE IV
NETWORK CONDITIONS [5]

Profile Download Speed (Kbps) Minimum latency (ms)
2G 450 150
3G 1500 40
4G 4000 20

WiFi 30000 2

The rest of this section will go over the multiple scenario’s
we set up for testing. The behavior of the clients will be
analyzed and explained.

B. Analysis

1) Ideal case: The first test we conducted consisted of
a single client fetching the video from the server with no
bandwidth throttling. This serves as a baseline for all other
experiments.

Fig. 2. Buffer level for the ideal case: a single client without a throttled
connection.

From Figure 2 we can see that the client immediately fills
up the playback buffer. The video is played back entirely in
high quality and throughout the entire video playback there
are no performance drops.

2) Stable 3G: In this first test making use of the throttling
settings, we applied a single network condition (3G) to see
how the client behaves with restricted bandwidth. Figure 3
illustrates that it takes the client around fifty seconds before it
mostly consistently displays the high quality video segments.
Even then, there are various drops to the medium quality video
stream and even two to the lowest quality.

In general the adaption seems to strike a new balance
between the size of the buffer and the amount of high quality
segments it can display. Where the unthrottled case had its
buffer size going up to thirty seconds, under the 3G network
conditions the DASH client keeps the buffer size hovering
around ten seconds, such that it can still manage to display
the video for more than half of its duration in high quality.

Fig. 3. Buffer level and quality over time for a good 3G connection.

3) Throttling levels: In the next experiment we started with
a very low available bandwidth for a single client and then
gradually increased it until the client had more bandwidth than
necessary. After reaching the high point, we decreased the
available bandwidth again in the same manner. See Table V.

TABLE V
CLIENT THROTTLING INTERVALS

Interval (s) Network
0 - 30 2G
30 - 60 3G
60 - 90 4G

90 - 120 WiFi
120 - 150 4G
150 - 180 3G
180 - 329 2G

The results are included in Figure 4. It becomes clear that
the client increases playback quality as the available bandwidth
increases. Just like in the previous scenario, we see that under
the 3G interval the client bounces back and forth between high
and medium quality, while keeping its buffer size around ten
seconds.

As soon as the bandwidth is upgraded to 4G, at around 60
seconds in, the quality stays high consistenly and the buffer is
being filled until it is thirty seconds in size. During the WiFi
interval this trend continues, which is in line with what we
expected based on the first, ideal scenario.

During the second 3G interval the client is presented nearly
exclusively with high quality segments, while during the first
3G interval and also in the stable 3G scenario we saw that
quality tended to interchange between medium and high.
In this specific case however, the client could sustain on
the buffered high quality segments produced during earlier,
higher bandwidth intervals. That is why the high quality stays
longer than one might expect based on the performance of the
network condition profile in isolation.

Fig. 4. Buffer level and quality over time under changing bandwidth
conditions.

4) Short-term versus long-term throttling: In this next
experiment we investigate how fast the DASH protocol reacts
to changes in the network condition. To this end we conduct
two tests. First we stream the video without any throttling,
except for every minute when we throttle the connection to
2G conditions for a duration of 3 seconds. This is the short-
term throttling scenario. The seconds tests proceeds in much
the same way, except that we throttle the connection to 2G for
a duration of 20 seconds every minute. This we call the long-
term throttling scenario. The results can be found in Figure
5 and Figure 6, for the short-term and long-term scenarios
respectively.

Fig. 5. Buffer level and quality over time for the short-term throttling scenario.

Clearly the short-term throttling has no effect on the quality
of the segments that is presented to the user; they are always

Fig. 6. Buffer level and quality over time for the long-term throttling scenario.

of high quality. We see momentary drops in the buffer level,
but not much more than five seconds at a time.

In contrast, with the long-term throttling scenario there
do occur drops in quality. Every minute we observe the
drop in quality taking place around 21 seconds after initial
throttling; just after the buffer was roughly halved in size.
This seems to be an indicator that the DASH protocol reacts
to. Coincidentally, by construction of our tests, that is also
the moment that we stop the throttling on the network for the
client. This has as effect that the buffer level stops dropping
and stays constant for about 8 seconds. Then both the quality
and the buffer level increase again. This means that the client
was able to replace buffered segments of lower quality and
build up a buffer with sufficiently many high quality segments
in those 8 seconds.

We observe that even though the client has a 30 second
buffer of high quality segments, it still drops the quality of
playback to medium after 21 seconds. We expected it to
at least present high quality segments to the user for 30
seconds. Apparently dropping the quality is part of the DASH
protocol’s strategy for managing its buffer while maximizing
the playback experience for the user.

5) Fairness with two clients: In the next experiment we
used two clients, both without throttling, but instead we limited
the bandwidth on the server side to evaluate how fairly the
available bandwidth is distributed between the clients. For
this task we used the tool wondershaper. [6] The steps of
available bandwidth for the server are illustrated in Table VI.
We initialized the server with a total bandwidth of 8192 Kbps.
After 90 seconds we halved the available bandwidth to 4096
Kbps, which was again halved to 2048 Kbps after another 90
seconds. Ultimately the available bandwidth to the server was
reduced to 1024 Kbps at which it stayed until both clients
finished streaming.

The results are illustrated in Figure 7 for the first client A
and in Figure 8 for the second client B.

Comparing Figure 7 and 8, it can be seen that in the first part
of the video the playback buffer develops similarly for both
clients, but especially towards the end the available bandwidth
is not fairly distributed between the clients. Nevertheless, both

TABLE VI
SERVER BANDWIDTH THROTTLING

Interval (s) Bandwidth (Kbps)
0 - 90 8192

90 - 180 4096
180 - 270 2048
270 - 329 1024

Fig. 7. Buffer level and quality over time for client A in the case of server
throttling.

clients experience the same video quality, which is the most
important metric for the end user from the perspective of
Quality of Experience. In general, the video quality level of
client B appears more volatile compared to client A’s video
quality. A possible explanation for this might be the particular
network conditions in our test environment (i.e. WiFi).

IV. CONCLUSION

In this report we investigated the behaviour of Adaptive
Bitrate Streaming with the DASH protocol under different
network conditions with regard to video quality and fairness
between clients. We found that the adaption to static and
changing network conditions works quite well to always
provide the user with the highest possible video quality while
minimizing buffering delays.

Fig. 8. Buffer level and quality over time for client B in the case of server
throttling.

One limitation of our experiments was the low number of
clients. Video streaming servers usually deal with thousands
of clients at the same time which can lead to complex and
unpredictable behaviours. In our tests we were not able to
simulate these conditions.

REFERENCES

[1] Blender Foundation, “Big Buck Bunny Trailer”, https://peach.blender.
org/trailer-page/, 2008.

[2] FFmpeg team, “FFmpeg Website”, https://ffmpeg.org/, 2019.
[3] GPAC, “MP4Box Website”, https://gpac.wp.imt.fr/mp4box/, 2019.
[4] Dash Industry Forum, “dash.js”, https://github.com/

Dash-Industry-Forum/dash.js, 2019.
[5] Mozilla, “Firefox Developer Tools Throttling”, https://developer.mozilla.

org/en-US/docs/Tools/Network Monitor/Throttling, 2019.
[6] Bert Hubert, Jacco Geul & Simon Séhier. “magnific0/wondershaper:

Command-line utility for limiting an adapter’s bandwidth”. https://
github.com/magnific0/wondershaper. 2019.

https://peach.blender.org/trailer-page/
https://peach.blender.org/trailer-page/
https://ffmpeg.org/
https://gpac.wp.imt.fr/mp4box/
https://github.com/Dash-Industry-Forum/dash.js
https://github.com/Dash-Industry-Forum/dash.js
https://developer.mozilla.org/en-US/docs/Tools/Network_Monitor/Throttling
https://developer.mozilla.org/en-US/docs/Tools/Network_Monitor/Throttling
https://github.com/magnific0/wondershaper
https://github.com/magnific0/wondershaper

	Introduction
	Experimentation setup
	Transcoding
	DASH Manifest
	Web server
	DASH client

	Analysis under different network conditions
	Data collection
	Analysis
	Ideal case
	Stable 3G
	Throttling levels
	Short-term versus long-term throttling
	Fairness with two clients

	Conclusion
	References

