
Intel Processor Tracing

Jack Henschel

August 2017

Introduction

Intel Processor Trace (PT) is a new feature of Intel processors which
provides machine instruction-level tracing. This can aid in low-level
debugging and performance analysis of programs and even state recov-
ery of crashed applications.

This papers documents the underlying design concept of Intel PT,
the requirements on the Linux platform as well as some of its perfor-
mance measurement use-cases.

1 Overview

The Linux operating system has a vast landscape of tracing tools [1]. kprobes,
uprobes, kernel tracepoints and dtrace probes are all data sources for captur-
ing data. ftrace, eBPF, perf, SystemTap and LTTng are tools to extract the
data and provide a frontend for the user. These can be used to hook into run-
ning programs and analyze their behavior (metrics like systems calls, time
spent in functions or waiting/blocking). Intel PT is another data source, but
it is dedicated, parallelized hardware inside the CPU’s performance moni-
toring unit (PMU) to trace software running on the CPU. It tracks branch
executions on each individual core, which allows the reconstruction of the
control flow of all executed code [2].

However, with the speed of modern CPUs (billions of clock cycles per sec-
ond), storing the collected data anywhere becomes challenging, because the
buffer is either not fast enough or too small (Memory Hierarchy). Intel PT
solves this problem by storing only the data absolutely required for recon-
structing the control flow of the program later. As an example, conditional
branches are only stored as a single bit (taken or not-taken). It also captures
certain processor execution mode changes (such as CR3, 32-bit/64-bit mode
and TSX transaction state) and timings.

The combination of specialized hardware for tracing and the highly com-
pressed tracing stream enables Intel PT to have very low overhead, but it
requires some effort to decode the packet stream.

Since Linux kernel version 4.3 Intel PT is fully integrated into the Linux
operating system (the kernel driver got merged in 4.1, perf user tools sup-

1

https://en.wikipedia.org/wiki/Linux
https://sourceware.org/systemtap/
https://lttng.org/
https://en.wikipedia.org/wiki/Memory_hierarchy
https://perf.wiki.kernel.org/index.php/Main_Page

port was merged in 4.3) and the GNU Debugger gdb (since 7.10, enables
backwards-debugging).

It has two basic operating modes, although more might be added in the
future [3, slide 8, “PT modes”]. Full trace mode allows continuous tracing
which runs as long as the disk keeps up (otherwise data loss may occur).
Snapshot mode runs in a special ring buffer (provided by the operating
system), stops tracing on an event of interest and only saves the snapshot
of the ring buffer at that time [4].

Intel PT was first featured in the Broadwell micro-architecture, following
micro-archictectures (Skylake and Goldmont) saw additional enhancements
such as fine grained timing and address filtering. It is also available on
the Atom platform (Silvermont and Airmont based products), but is called
Real-Time Instruction Trace (RTIT) there [5].

It should be noted that for any meaningful analysis, the compiler must
not omit the frame pointer. Modern compilers re-use the frame pointer reg-
ister (EBP on x86 platforms) as a general purpose register and to avoid the
instructions to save, set and restore frame pointer. However, it makes recon-
struction of call stacks (and therefore debugging in general) impossible. For
example, gcc omits the frame pointer by default, but this can be prevented
by using the --fno-omit-framepointer options [6].

2 Collection

After data has been captured by the CPU it needs to be fetched, decoded
and interpreted. The fetching happens via Linux’ perf_event interface, the
decoding can either be done manually or one can use the free, open-source
Processor Trace Decoder Library (libipt) provided by Intel to decode the
packet stream [7]. Alternatively, one can also use the Linux perf-tools or
gdb which come with integrated Intel PT support.

3 Packets

The Intel PT hardware writes individual packets into the log stream. These
packets need to be decoded, bound to an event and then the execution flow
can be reconstructed. These three steps are all implemented in the Intel
Processor Trace Decoding library (libipt) [7].

1. PSB (Packet Stream Boundary): heartbeats, generated at regular
intervals (first packet in stream)

2. TNT (Taken Not-Taken): direct conditional branches

3. TIP (Target IP): target address of indirect branches, exception and
interrupts

2

https://www.gnu.org/software/gdb/
https://en.wikipedia.org/wiki/Broadwell_%28microarchitecture%29
https://en.wikipedia.org/wiki/Skylake_(microarchitecture)
https://en.wikipedia.org/wiki/Goldmont
https://en.wikipedia.org/wiki/Atom_(system_on_chip)
https://en.wikipedia.org/wiki/Silvermont
https://en.wikipedia.org/wiki/Airmont_(microarchitecture)

4. FUP (Flow Update Packets): source IP address for asynchronous
events

5. PIP (Paging Information Packet): modifications to CR3 register

6. TSC (Time-Stamp Counter): tracks wall clock data (contains some
portion of the software-visible time-stamp counter)

7. MODE: processor execution information and mode (16-, 32- or 64-bit)

8. CBR (Core Bus Ratio): core to bus clock ratio

9. MWAIT: indicate successful completion of an MWAIT operation to
a C-state deeper than C0.0

10. PWRE (Power State Entry): indicate entry to a C-state deeper than
C0.0

11. PWRX (Power State Exit): indicate exit from a C-state deeper than
C0.0, returning to C0.

12. EXSTOP (Execution Stopped): indicate that software execution has
stopped, due to events such as P-state change, C-state change, or
thermal throttling

13. CYC (Cycle-Accurate Mode): provides elapsed time as measured in
processor core clock cycles relative to the last CYC packet (Not avail-
able on Broadwell)

14. MTC (Mini Time Counter): provides a periodic indication of wall-
clock time (Not available on Broadwell)

15. OVF (Overflow): indicates internal buffer overflow (packets being
dropped)

16. PAD: padding

For performance analysis and debugging the Time-Stamp Counter packet
(TSC) is especially interesting. But for tracing with instruction-level granu-
larity, this packet is not generated often and regularly enough (its generation
can also not be configured). This is an application of the Cycle-Accurate
Mode (with the CYC packet, whose generation is very regular and frequent),
as the Cycle Counter field increments at the same rate as the processor core
clock ticks. This feature is only available on Skylake and onwards.

For more information on these packets please refer to Intel’s Software
Developer’s Manual Volume 3 [8, Chapter 35].

3

4 Use Cases

4.1 Peformance Profiling

The Linux perf tooling can be used to profile the performance of the appli-
cation. Profiling means analyzing the program in intervals and measuring
how often something happened (as opposed to counting).

$ perf record --event intel_pt//u --delay 100 -g -- ./simple 129129637

129129637 = 83471.000000 * 1547.000000

[perf record: Woken up 2549 times to write data]

[perf record: Captured and wrote 159.771 MB perf.data]

We profile the application (the program and its arguments are specified after
the --) with the Intel PT ’event’ (due to the trailing u only in userspace), with
a delay of 100 microseconds (to skip the startup and initialization phase) and
record the call-graph. Instead of not recording the first 100 microseconds of
the application, we could later also choose to skip them when analyzing the
data.

$ perf report --show-nr-samples --stdio

Samples: 40K of event ’instructions:u’

Event count (approx.): 3598905087

#

Children Self Samples Command Shared Object Symbol

........

#

100.00% 0.15% 71 simple simple [.] factor

|

---factor

|

--99.85%--isSquareNumber

99.85% 99.85% 40731 simple simple [.] isSquareNumber

|

---factor

isSquareNumber

0.00% 0.00% 1 simple libc-2.24.so [.] _dl_addr

0.00% 0.00% 0 simple simple [.] main

0.00% 0.00% 0 simple libc-2.24.so [.] printf

0.00% 0.00% 0 simple libc-2.24.so [.] vfprintf

0.00% 0.00% 0 simple libc-2.24.so [.] _IO_file_xsputn@@GLIBC_2.2.5

0.00% 0.00% 0 simple libc-2.24.so [.] _IO_file_overflow@@GLIBC_2.2.5

0.00% 0.00% 0 simple libc-2.24.so [.] _IO_doallocbuf

0.00% 0.00% 0 simple libc-2.24.so [.] _IO_file_doallocate

0.00% 0.00% 0 simple libc-2.24.so [.] malloc_hook_ini

0.00% 0.00% 0 simple libc-2.24.so [.] ptmalloc_init.part.5

We instruct perf to report on the previously recorded perf.data file, print
the output to the console (instead of using the interactive user interface)
and show the total number of recorded samples. As expected, the CPU
spends most of its cycles in the compute intensive isSquareNumber function,
99.85% to be precise. We can also see that due to not recording the first

4

100 microseconds of the application, Perf did not record a single sample of
the main function.

In newer micro-architectures (beginning with Skylake) Intel PT also sup-
ports address filtering. This feature can be used to trace only specific func-
tions or ranges in the application:

perf record -e intel_pt//

--filter ’filter main @ /path/to/program’

-- program

perf record -e intel_pt//

--filter ’start func1 @ /path/to/program’

--filter ’stop func2 @ /path/to/program’

-- program

This feature is not supported on the Broadwell micro-architecture.

Perf also lets one dump the raw packets generated by the Intel PT hardware:

$ perf report -D

...snip...

0x3ba0 [0x30]: PERF_RECORD_AUXTRACE size: 0x200000 offset: 0 ref: 0xf48c901095c50

idx: 35 tid: 14554 cpu: 35

.

. ... Intel Processor Trace data: size 2097152 bytes

. 00000000: 02 82 02 82 02 82 02 82 02 82 02 82 02 82 02 82 PSB

. 00000010: 19 10 08 73 f8 c8 48 0f TSC 0xf48c8f8730810

. 00000018: 02 03 0c 00 00 00 00 00 CBR 0xc

. 00000020: 02 23 00 00 00 00 00 00 PSBEND

. 00000028: 02 82 02 82 02 82 02 82 02 82 02 82 02 82 02 82 PSB

. 00000038: 19 e0 fa 77 f8 c8 48 0f TSC 0xf48c8f877fae0

. 00000040: 02 03 0c 00 CBR 0xc

. 00000044: 99 20 MODE.TSX TXAbort:0 InTX:0

. 00000046: 99 01 MODE.Exec 64

. 00000048: 7d 20 2c 5c 49 45 7f 00 FUP 0x7f45495c2c20

. 00000050: 02 23 00 00 00 00 00 00 PSBEND

. 00000058: 71 20 2c 5c 49 45 7f 00 TIP.PGE 0x7f45495c2c20

. 00000060: 7d 20 2c 5c 49 45 7f 00 FUP 0x7f45495c2c20

. 00000068: 01 00 00 00 00 00 00 00 TIP.PGD no ip

. 00000070: 02 82 02 82 02 82 02 82 02 82 02 82 02 82 02 82 PSB

. 00000080: 19 70 3f 78 f8 c8 48 0f TSC 0xf48c8f8783f70

. 00000088: 02 03 0c 00 CBR 0xc

. 0000008c: 99 20 MODE.TSX TXAbort:0 InTX:0

. 0000008e: 99 01 MODE.Exec 64

. 00000090: 7d 20 2c 5c 49 45 7f 00 FUP 0x7f45495c2c20

. 00000098: 02 23 00 00 00 00 00 00 PSBEND

. 000000a0: 71 20 2c 5c 49 45 7f 00 TIP.PGE 0x7f45495c2c20

. 000000a8: 7d 7f 38 5c 49 45 7f 00 FUP 0x7f45495c387f

. 000000b0: 01 00 00 00 00 00 00 00 TIP.PGD no ip

. 000000b8: 02 82 02 82 02 82 02 82 02 82 02 82 02 82 02 82 PSB

. 000000c8: 19 f8 65 78 f8 c8 48 0f TSC 0xf48c8f87865f8

. 000000d0: 02 03 0c 00 CBR 0xc

Instead of recording the application execution from the start, we can
also leverage the snapshot mode. To switch to this mode with perf, we
simply use the -S or --snapshot argument for perf record and send a USR2

5

signal (user-defined signal 2) to the recording process whenever we want to
save data. Here is a generic example:

$ perf record -e intel_pt// --snapshot -- program &

[1] 1713

$ PERF_PID=$!

execute workload / wait for event

event happens

$ kill -USR2 $PERF_PID

end recording session

$ kill $PERF_PID

Perf will again store the data in the perf.data file and we can analyze it with
perf report or perf script.

It is possible to export the data from Perf with instruction level gran-
ularity using --itrace=i1i, where 1i sets the sampling interval (here: each
instruction). However without restrictions on address filtering (e.g. only
tracing specific functions) or time (via Perf’s --time argument) this produces
extremely high volume output.

4.2 Flame Graphs

Since Intel PT is able to generate so much data (hundreds of megabytes per
second per core) and modern software is almost always very complex, one has
to think carefully about which data to collect and analyze. Flame Graphs
provide a quick, high-level overview of what is happening during program
execution and where the hot spots are. Each box represents a stack frame
(a function on the stack), the y-axis displays the depth of the stack (number
of frames on the stack) and the x-axis spans the sample population (it is
ordered alphabetically and does not indicate the passing of time from left
to right). To generate a flame graph, one first has to capture the stack of
the application (for example with Intel PT or any other profiling tool), then
fold the stack (i.e. count how often each unique function was on top of the
stack) and finally generate a graphic visualization. The latter two steps are
implemented by the free, open-source FlameGraph Tool, which generates
interactive and searchable SVG (Scalable Vector Graphics) output.

$ perf record -e intel_pt//u --delay 100 -- ./tickler

-l libl2ps.so -t libproc_exp_ul.so

...snip...

[perf record: Woken up 12054 times to write data]

[perf record: Captured and wrote 755.170 MB perf.data]

6

http://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html
https://github.com/brendangregg/FlameGraph
https://en.wikipedia.org/wiki/Scalable_Vector_Graphics

$ perf script --itrace=i99usg |

./stackcollapse-perf.pl > workload.folded

$./flamegraph.pl workload.folded > workload.svg

The above perf-command profiles the application after a delay of 100
milliseconds (-D). Afterwards, the collected data is sampled at intervals of
99 microseconds (the odd number was choosen to eliminate any accidental
alignment with other, regular events). The resulting graphic can be viewed
in any SVG viewer, such as modern web browsers. Figure 1 shows the
complete generated graphic, figure 2 is a zoomed example.

Figure 1: Full Flame Graph of L2-PS Tickler

Figure 2: Zoomed Flame Graph of L2-PS Tickler

Depending on the size of the profiling sample (this one is quite large with
four quarters of a gigabyte) and the specified sampling interval the folding
of the stack and the generation of the graphic can take quite some time.

4.3 Debugging

Since gdb supports Intel PT, both tools can be combined for debugging
applications. Consider the following C program:

int main(void) {

int *a = 0;

for (int i = 0; i < 10; i++)

7

if (i >= 8)

*a = 0;

return 0;

}

The kernel will terminate the loop at the ninth iteration due to a seg-
mentation fault.

$ gcc -g -o crash crash.c

$./crash

(Segmentation fault)

Using gdb, we could step through the program until it crashes. Leveraging
the power of Intel PT, we record the execution, let the program run until it
crashes and examine the data afterwards.

$ gdb ./crash

Reading symbols from ./crash ...done.

(gdb) start

Temporary breakpoint 1 at 0x664: file crash.c, line 2.

Starting program: ./crash

main () at crash.c:2

2 int *a = 0;

Start recording session with branch tracing using Intel PT format

(gdb) record btrace pt

Show some information about recording session

(gdb) info record

Active record target: record-btrace

Recording format: Intel Processor Trace.

Buffer size: 16kB.

Recorded 0 instructions in 0 functions (0 gaps) for thread 1 (process 42).

Continue running the program

(gdb) continue

Continuing.

Program received signal SIGSEGV, Segmentation fault.

0x000055555555467f in main () at crash.c:5

5 *a = 0;

Show information about recording session

(gdb) info record

Active record target: record-btrace

8

https://en.wikipedia.org/wiki/Segmentation_fault
https://en.wikipedia.org/wiki/Segmentation_fault

Recording format: Intel Processor Trace.

Buffer size: 16kB.

Recorded 48 instructions in 1 functions (0 gaps) for thread 1 (process 42).

Show last ten instructions with source lines annotated

(gdb) record instruction-history /s -

39 0x0000555555554689 <main+41>: cmpl $0x9,-0x4(%rbp)

40 0x000055555555468d <main+45>: jle 0x555555554675 <main+21>

crash.c:4 if (i >= 8)

41 0x0000555555554675 <main+21>: cmpl $0x7,-0x4(%rbp)

42 0x0000555555554679 <main+25>: jle 0x555555554685 <main+37>

crash.c:3 for (int i = 0; i < 10; i++)

43 0x0000555555554685 <main+37>: addl $0x1,-0x4(%rbp)

44 0x0000555555554689 <main+41>: cmpl $0x9,-0x4(%rbp)

45 0x000055555555468d <main+45>: jle 0x555555554675 <main+21>

crash.c:4 if (i >= 8)

46 0x0000555555554675 <main+21>: cmpl $0x7,-0x4(%rbp)

47 0x0000555555554679 <main+25>: jle 0x555555554685 <main+37>

crash.c:5 *a = 0;

48 0x000055555555467b <main+27>: mov -0x10(%rbp),%rax

Show function call history reflecting stack depth

(gdb) record function-call-history /ilc

1 main inst 1,49 at crash.c:2,5

Do a backwards step

(gdb) reverse-step

5 *a = 0;

Because Intel PT is specifically for While Intel PT does allow full control-
flow reconstruction, it does not enable data viewing:

(gdb) print i

$1 = <unavailable>

To increase the size of the ring buffer Intel PT uses for storing the packet
stream (e.g. to increase the available context for debugging), use gdb’s set

command:

set record btrace pt buffer-size <size>

When specifying 0 or unlimited for size, gdb allocates a buffer of 4MB.
For more information on “process record and replay” in gdb please refer

to the GNU Debugger Documentation [9].

9

4.4 Simple PT

Simple PT (by Andi Kleen, an Intel engineer) is a simple yet full-stack
implementation for Intel PT. It consists of a kernel driver (for talking to the
Intel PT hardware block), a command to collect the data, a command to
display function or instruction traces and a command to dump raw traces.
It uses the previously mentioned libipt [7] to decode the packet stream. To
communicate with the Intel PT hardware block, it loads a kernel module
(.ko). It may serve as a resource for writing low-level interfaces for Intel PT.

The simple-pt contains a tool to check available hardware features:

$./ptfeature

Supports PT

toPA output support: 1

multiple toPA entries: 0

single range: 0

trace transport output: 0

payloads are LIP: 0

cycle accurate mode / psb freq: 0

filtering / stop / mtc: 0

CR3 match: 1

Number of address ranges: 0

Supports filter ranges: 0

Supports stop ranges: 0

Valid cycles thresholds:

Valid PSB frequencies:

Valid MTC frequencies:

Family: 6

Model: 79

Stepping: 1

The output above shows that the hardware has support for Intel PT,
however it does not support address filtering.

The following command initializes the Intel PT hardware and configures
for filter for “simple”. Alternatively, one can also trace the whole system
(discard the -c option), only user-space (with --no-kernel or -K) or only
kernel (with --no-user or -U).

$./sptcmd --comm simple -- ./simple 123456789

123456789 = 11409.000000 * 10821.000000

cpu 0 offset 80, 0 KB, writing to ptout.0

cpu 1 offset 80, 0 KB, writing to ptout.1

cpu 2 offset 80, 0 KB, writing to ptout.2

...snip...

cpu 40 offset 80, 0 KB, writing to ptout.40

10

https://github.com/andikleen/simple-pt

cpu 41 offset 40912, 39 KB, writing to ptout.41

cpu 42 offset 80, 0 KB, writing to ptout.42

...snip...

cpu 55 offset 80, 0 KB, writing to ptout.55

Wrote sideband to ptout.sideband

Simple PT writes its tracing output into the files ptout.N (where N is the
number of cores in the system, each core has its own file) and stores the
sideband information required for decoding in ptout.sideband. Note that
most of these files are empty (filesize: 0KB), only ptout.41 contains data in
this example. This means the application only ran on the CPU core with
ID 41.

Next, one can either dump the raw (encoded) packets like so:

$./fastdecode ptout.41

0 psb

10 tsc 3927125878401568

18 cbr 12

1c pad

1d pad

1e pad

1f pad

20 psbend

22 pad

23 pad

24 pad

25 pad

26 pad

27 pad

28 psb

38 tsc 3927125882985096

40 pip 1039be6000

48 cbr 12

4c mode.tsx

4e mode.exec lma=1 cs.d=0

50 fup 3: ffffffff9665ab04

57 pad

58 psbend

...

Or let Simple PT and libipt do the decoding of the packets and show
function calls:

$./sptdecode --sideband ptout.sideband --pt ptout.41 | less

With the -i switch the raw instructions are displays (optionally with
disassembly, if Intel’s XED disassembler is present):

11

$./sptdecode --sideband ptout.sideband --pt ptout.41 -i

ffffffff9665ab06 0 other insn: 31 c0 xor %eax, %eax

ffffffff9665ab08 0 other insn: 0f 1f 44 00 00 nopl %eax, (%rax,%rax,1)

ffffffff9665ab0d 0 ret insn: c3 retq

ffffffffc032b49e 0 other insn: 66 90 data16 nop

ffffffffc032b4a0 0 other insn: 49 89 c4 mov %rax, %r12

ffffffffc032b4a3 0 other insn: 0f 1f 44 00 00 nopl %eax, (%rax,%rax,1)

ffffffffc032b4a8 0 other insn: 48 8b 44 24 10 movq 0x10(%rsp), %rax

ffffffffc032b4ad 0 other insn: 65 48 33 04 25 28 00 00 00 xorq %gs:0x28, %rax

ffffffffc032b4b6 0 cjump insn: 0f 85 7a 01 00 00 jnz 0xffffffffc032b636 <set_cr3_filter+0x266>

ffffffffc032b4bc 0 other insn: 48 83 c4 18 add $0x18, %rsp

ffffffffc032b4c0 0 other insn: 5b popq %rbx

4.5 AutoFDO

Automatic Feedback Directed Optimizer (AutoFDO) can be used to drive
feedback directed compiler optimizations based on sampling profiles. This
allows the compiler to optimize for a specific use case of the binary. Both
GCC and LLVM can consume samples collected by perf with Intel PT (trans-
formed by the AutoFDO tool). Note that the application need not be pro-
filed with a full load, even a small but representative load is enough to
collect valuable information. Google has begun deploying AutoFDO on its
systems and by 2016 more than half of CPU cycles are now spent in feed-
back directed optimized-binaries. Google’s profile collector crawls machine
in random order and requests a 10-second system-wide profile. This equates
to “about 10% of machines each day, so around 0.001% of observable cycles
are profiled. During profiling, less than 1% overhead is observed.” [10]

$ gcc -O3 sort.c -o sort_optimized

$./sort_optimized 30000

Bubble sorting array of 30000 elements

2254 ms

$ cat ~/.perfconfig

[intel-pt]

mispred-all = on

$ perf record -e intel_pt//u ./sort 3000

Bubble sorting array of 3000 elements

58 ms

[perf record: Woken up 2 times to write data]

[perf record: Captured and wrote 3.939 MB perf.data]

$ perf inject -i perf.data -o perf.inj --itrace=i100usle --strip

$./create_gcov --binary=./sort --profile=perf.inj

--gcov=sort.gcov -gcov_version=1

12

https://gcc.gnu.org/wiki/AutoFDO
https://gcc.gnu.org/
https://llvm.org/
https://github.com/google/autofdo

$ gcc -O3 -fauto-profile=sort.gcov sort.c -o sort_autofdo

$./sort_autofdo 30000

Bubble sorting array of 30000 elements

2155 ms

The above example is from the Intel PT documentation in the Linux ker-
nel tree. Currently, the AutoFDO conversion tool does not work with the
latest Linux Perf version, however a pull request has been opened by Andi
Kleen (https://github.com/google/autofdo/pull/44) and after apply-
ing the patch the conversion worked.

4.6 Intel Tools

Intel has integrated Processor Trace into two of its other software products.
Intel VTune Amplifier is a commercial performance profiler. Intel SATT
(Software Analyze Trace Tool) is a free and open-source Linux program
to trace, process and analyze full stack software traces utilizing Intel PT,
featuring a web-based UI for studying execution in function level from all
CPUs, processes, threads and modules.

4.7 Other Uses

As shown in a presentation by two vulnerability researches, Intel PT may
also be used for diagnostic code coverage, coverage driven fuzzing (automat-
ically finding software vulnerabilities) and malware analysis [11].

References

[1] Linux Tracing Tools, Brendan Gregg, http://www.brendangregg.com/
Perf/linux_observability_tools.png

[2] Intel Blog: Processor Tracing, James R. Reinders, September
18, 2013, https://software.intel.com/en-us/blogs/2013/09/18/

processor-tracing

[3] Intel Processor Trace on Linux, Andi Kleen and Beeman Strong, 2015-
08-20, http://halobates.de/pt-tracing-summit15.pdf

[4] Linux Kernel Documentation, https://git.kernel.

org/pub/scm/linux/kernel/git/torvalds/linux.git/

tree/tools/perf/Documentation/intel-pt.txt?id=

510c8a899caf095cb13d09d203573deef15db2fe

13

https://github.com/google/autofdo/pull/44
https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://github.com/01org/satt
https://github.com/01org/satt
http://www.brendangregg.com/Perf/linux_observability_tools.png
http://www.brendangregg.com/Perf/linux_observability_tools.png
https://software.intel.com/en-us/blogs/2013/09/18/processor-tracing
https://software.intel.com/en-us/blogs/2013/09/18/processor-tracing
http://halobates.de/pt-tracing-summit15.pdf
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/perf/Documentation/intel-pt.txt?id=510c8a899caf095cb13d09d203573deef15db2fe
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/perf/Documentation/intel-pt.txt?id=510c8a899caf095cb13d09d203573deef15db2fe
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/perf/Documentation/intel-pt.txt?id=510c8a899caf095cb13d09d203573deef15db2fe
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/perf/Documentation/intel-pt.txt?id=510c8a899caf095cb13d09d203573deef15db2fe

[5] Intel Real-Time Instruction Tracing (RTIT), https://

www-ssl.intel.com/content/www/us/en/processors/atom/

real-time-instruction-trace-atom-reference.html

[6] GNU C Compiler gcc 5.3.0 Documentation, 3.10 Optimization
Options https://gcc.gnu.org/onlinedocs/gcc-5.3.0/gcc/

Optimize-Options.html

[7] Intel Processor Trace Decoding library: libipt, https://github.com/

01org/processor-trace

[8] Intel Software Developer’s Manual, Volume 3, https://

software.intel.com/sites/default/files/managed/a4/60/

325384-sdm-vol-3abcd.pdf

[9] GNU Debugger Documentation: Process Record and Re-
play, https://sourceware.org/gdb/onlinedocs/gdb/

Process-Record-and-Replay.html

[10] AutoFDO: Automatic Feedback-Directed Optimization for Warehouse-
Scale Applications, Dehao Chen and David Xinliang Li and Tipp Mose-
ley, 2016, https://research.google.com/pubs/pub45290.html

[11] Harnessing Intel Processor Trace on Windows for Vulnerabil-
ity Discovery, Andrea Allievi and Richard Johnson, 2017-04-13,
https://conference.hitb.org/hitbsecconf2017ams/materials/

D1T1%20-%20Richard%20Johnson%20-%20Harnessing%20Intel%

20Processor%20Trace%20on%20Windows%20for%20Vulnerability%

20Discovery.pdf

[12] Efficient and Large Scale Program Flow Tracing in Linux, Alexander
Shishkin, 2013-09-16, http://events.linuxfoundation.org/sites/

events/files/slides/lcna13_kleen.pdf

[13] Adding Processor Trace support to Linux, Andi Kleen, 2015-07-01,
https://lwn.net/Articles/648154/

14

https://www-ssl.intel.com/content/www/us/en/processors/atom/real-time-instruction-trace-atom-reference.html
https://www-ssl.intel.com/content/www/us/en/processors/atom/real-time-instruction-trace-atom-reference.html
https://www-ssl.intel.com/content/www/us/en/processors/atom/real-time-instruction-trace-atom-reference.html
https://gcc.gnu.org/onlinedocs/gcc-5.3.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-5.3.0/gcc/Optimize-Options.html
https://github.com/01org/processor-trace
https://github.com/01org/processor-trace
https://software.intel.com/sites/default/files/managed/a4/60/325384-sdm-vol-3abcd.pdf
https://software.intel.com/sites/default/files/managed/a4/60/325384-sdm-vol-3abcd.pdf
https://software.intel.com/sites/default/files/managed/a4/60/325384-sdm-vol-3abcd.pdf
https://sourceware.org/gdb/onlinedocs/gdb/Process-Record-and-Replay.html
https://sourceware.org/gdb/onlinedocs/gdb/Process-Record-and-Replay.html
https://research.google.com/pubs/pub45290.html
https://conference.hitb.org/hitbsecconf2017ams/materials/D1T1%20-%20Richard%20Johnson%20-%20Harnessing%20Intel%20Processor%20Trace%20on%20Windows%20for%20Vulnerability%20Discovery.pdf
https://conference.hitb.org/hitbsecconf2017ams/materials/D1T1%20-%20Richard%20Johnson%20-%20Harnessing%20Intel%20Processor%20Trace%20on%20Windows%20for%20Vulnerability%20Discovery.pdf
https://conference.hitb.org/hitbsecconf2017ams/materials/D1T1%20-%20Richard%20Johnson%20-%20Harnessing%20Intel%20Processor%20Trace%20on%20Windows%20for%20Vulnerability%20Discovery.pdf
https://conference.hitb.org/hitbsecconf2017ams/materials/D1T1%20-%20Richard%20Johnson%20-%20Harnessing%20Intel%20Processor%20Trace%20on%20Windows%20for%20Vulnerability%20Discovery.pdf
http://events.linuxfoundation.org/sites/events/files/slides/lcna13_kleen.pdf
http://events.linuxfoundation.org/sites/events/files/slides/lcna13_kleen.pdf
https://lwn.net/Articles/648154/

	Overview
	Collection
	Packets
	Use Cases
	Peformance Profiling
	Flame Graphs
	Debugging
	Simple PT
	AutoFDO
	Intel Tools
	Other Uses

