
Tracing Frameworks

Jack Henschel

March 2017

Introduction

Tracing Frameworks provide a direct interface to inspect, test, de-
bug and measure running applications (so called “online code”). This
can be valuable while developing a program (e.g. for performance anal-
ysis or error checking), but also when troubleshooting issues after de-
ployment in the field. Some frameworks don’t require modification of
application source code at all, others depend on entry points (“mark-
ers”) or loading additional libraries.

In this paper I will demonstrate the usage of SystemTap and eval-
uate two other tracing frameworks (Frida and LTTng) at the end.

1 SystemTap

SystemTap is developed by Red Hat Inc. and had its initial release in 2005.
The tool has its own scripting language with a similar syntax to C, which
consists of global variables, functions and probe point definitions. These
“stap scripts” are then parsed, resolved (for symbols, types and probes) and
translated into C code by SystemTap. From there on SystemTap uses one
of its (currently) two supported backends: the Linux kernel module backend
and the DynInst library backend.

The Linux kernel backend works by compiling the C code into a loadable
kernel object module (extension .ko), which can then be loaded and executed
by the Linux kernel. This backend has the power to probe any code running
in kernel- or user-space mode. However, loading a kernel module requires
elevated privileges.

Alternatively, the DynInstAPI backend uses a dynamic program anal-
ysis approach for binary instrumentation, analysis and modification. This
backend can be used without root privileges, however can only probe code
executed by the same user. This backend offers even lower overhead than
the Linux kernel module backend, was however to unstable in testing to be
evaluated further (application crashes through memory corruption).

Here is an example of a basic stap script:

1

https://sourceware.org/systemtap/
https://en.wikipedia.org/wiki/Loadable_kernel_module
https://en.wikipedia.org/wiki/Loadable_kernel_module
http://www.dyninst.org/dyninst
https://en.wikipedia.org/wiki/Dynamic_program_analysis
https://en.wikipedia.org/wiki/Dynamic_program_analysis
https://sourceware.org/bugzilla/show_bug.cgi?id=21223

#!/usr/bin/stap

probe kernel.module("vfs"). function("read") {

printf("read from the virtual filesystem\n")

exit()

}

SystemTap’s scripting language makes it both very flexible and easy to
use.

However, the Linux kernel backend of SystemTap does also have a down-
side: it requires various kernel headers and debug symbol objects to be in-
stalled on the system, so SystemTap knows where to place its probes in
the code segment in the memory. Red Hat and Debian based distributions
provide these as debug packages (package suffix dbg or dbgsym) which can
easily be installed via the distribution’s package manager. In custom built
environment it can be troublesome to obtain these files.

To illustrate the possibilities of SystemTap, I will use the following C
program.

simple.c

#include <stdlib.h>

#include <stdio.h>

#include <math.h>

#include <errno.h>

#include <limits.h>

static long double factors [2];

static int isSquareNumber(long long n) {

long long i = 1;

while(n > 0) {

n -= i;

i += 2;

}

return n == 0;

}

static void factor(unsigned long long n) {

long double r, x, y;

x = ceill(sqrtl(n));

r = x*x - n;

while (! isSquareNumber(r))

r += 2*(x++) + 1;

y = sqrtl(r);

factors [0] = x + y;

factors [1] = x - y;

}

int main(int argc , char **argv) {

char *t;

2

unsigned long long n;

if (argc != 2) {

printf("Usage: %s <UNSIGNED INTEGER >\n", argv [0]);

exit(EXIT_FAILURE);

}

errno = 0;

n = strtoull(argv[1], &t, 10);

if (! t || (n == ULLONG_MAX && errno)) {

perror("strtoull");

exit(EXIT_FAILURE);

}

factor(n);

printf("%lld = %Lf * %Lf\n", n, factors [0], factors [1]);

exit(EXIT_SUCCESS);

}

This C program will spend most of its time in the function factor and
jump to the function isSquareNumber very often. These are two interesting
metrics one can measure with tracing frameworks.

Using a SystemTap script (“stap script”) we can measure these metrics.
First off, some global variables to store values in:

perf.stp (Part 1)

global process_exec_time

global func_factor_time

global func_factor_cycles

global func_isSquareNum_calls

Next, the actual probe points (these are the places in the code where
SystemTap will be triggered via a software breakpoint):

perf.stp (Part 2)

/* save starting time of given process */

probe process.begin {

process_exec_time = gettimeofday_ns ()

}

/* calculate time difference from start time and save it */

probe process.end {

process_exec_time = gettimeofday_ns () - process_exec_time

}

/* increment counter for each call of isSquareNumber */

probe process.function("isSquareNumber").call {

func_isSquareNum_calls <<< 1

}

3

/* save starting time and cycles of function factor */

probe process.function("factor") {

func_factor_time = gettimeofday_ns ()

func_factor_cycles = get_cycles ()

}

/* calculate time difference from start time and save it */

probe process.function("factor"). return {

func_factor_cycles = get_cycles () - func_factor_cycles;

func_factor_time = gettimeofday_ns () - func_factor_time

}

As can be easily seen, we are measuring the total execution time of the
process (with process.begin and process.end), the time and CPU cycles spent
in the function factor (with process.function("factor") and process.function

("factor").return), as well as the number of times the function isSquareNumber

was called (with process.function("isSquareNumber").call) and a special op-
erator called statistical aggregate.

The statistical aggregate operator in SystemTap is made for storing data
very fast. Unlike variables and arrays, it does not lock the variable when
writing to it, which makes the operation very “cheap”. However, when
reading data from the statistical aggregate, one must not expect the values
to have any kind of order (i.e. chronological order is not guaranteed).

At the end of the probe (or when the process finishes), we are collecting
the results of the measurements and display them to the user:

perf.stp (Part 3)

/* print statistics when stap exits */

probe end {

printf("Execution time of Process %d: %d ns\n",

target(), process_exec_time)

printf("Execution time of Function factor: %d ns\n",

func_factor_time)

printf("Total cycles in Function factor: %d\n",

func_factor_cycles)

printf("Total calls of Function isSquareNumber: %d\n",

@count(func_isSquareNum_calls))

delete process_exec_time

delete func_isSquareNum_calls

delete func_factor_time

delete func_factor_cycles

exit()

}

It outputs the process id (PID) of the traced program along with the
total runtime of the process, the time and CPU cycles spent in the function
factor and how often the function isSquareNumber was called. Afterwards, the
values for the items are deleted and SystemTap exits.

But how does SystemTap know which process it should attach to? In
the SystemTap script shown above I simply used the probe point process,

4

but one can also specify an explicit process path (such as process("./myapp")

or process("/lib/liberty.so")) or process id (process(123)).
If no process is defined in the script, one has to provide this information

to SystemTap via command line. This way, one can write generic scripts
which can attach to any arbitrary process the users chooses.

After compiling the test application to the binary simple, we can run the
SystemTap script perf.stp. This may look as follows:

$ gcc -std=gnu99 -lm -o simple simple.c

$ stap -c ’./simple 129129637 ’ perf.stp

129129637 = 83471.000000 * 1547.000000

Execution time of Process 4170: 2598279897 ns

Execution time of Function factor: 2577533391 ns

Total cycles in function factor: 6222798641

Total calls of Function isSquareNumber: 31146

The first line of output comes from the program itself, the application
calculated 83,471 and 1547 as the two factors of 129,129,637. The follow-
ing lines were output by SystemTap: the process ran with PID 4170 and
had a total execution time of about 2.6 seconds (2,598,279,897 ns). As an-
ticipated, most of this time was spent in the function factor, namely 2.58
seconds (2,577,533,391 ns) or over six billion CPU cycles (6,222,798,641).
The isSquareNumber function was called over thirty thousand times (31,146).

Of course, we already knew these results beforehand. But it just goes to
show that the methodology actually works.

Variables SystemTap can also read arbitrary variables from any place in
the program, including return values and function parameters.

Assuming we have a function named example with a function parameter
char *message (essentially containing a string), we can access this variable by
simply prefixing it with a dollar sign:

/* void* example(char *message) */

probe process.function("example") {

if($message != 0) {

printf("message: %x\n", $message)

}

}

Of course, this is still pretty useless, because we want the message itself
and not the address of the pointer to the message (although, there may be
various cases where this information could be valuable, too). To dereference
a pointer in a SystemTap script, we first need to know if we are dealing
with a variable in kernel- or user-space, then we can choose the appropriate

5

function (see Section 3.3.2 and 4.2 of the SystemTap Beginners Guide for
more information).

/* void* example(char *message) */

probe process.function("example") {

if($message != 0) {

m = user_string(message)

printf("message: %s", m)

}

}

For kernel addresses, the corresponding functions are called kernel_* in-
stead of user_* and the same functions are available.

To simply print all variables, function parameters, local variables or the
return value of a function, SystemTap has special operators: $$vars, $$locals,
$$parms and $$return. These expand to a string equivalent of sprintf("var1=%x
var2=%x ... parm1=%x ... local1=%x ...", var1, var2, ..., parm1, ..., local1

, ... ").

probe kernel.function("vfs.read") {

printf("%s\n", $$vars)

}

For an in-depth explanation of pretty printing target variables, please con-
sult SystemTap Beginners Guide Section 3.3.2.1.

Functions The more complex one’s stap scripts become, the more useful
are SystemTap functions. These are declared by the prefix function and op-
tional function parameters. Function parameters may be typed by suffixing
the parameter name with :type.

/* swap bytes of a short (16 bit) */

function swap_short (addr:long) {

first = user_char(addr + 0)

second = user_char(addr + 1)

number = first << 8 | second

return number

}

Overhead Live probing any application comes with executing additional
code, i.e. overhead. It is very important to gain an understanding of the
performance hit that comes with these measurements. In order to do so, I
wrote a C application which measures its own runtime and does not do any
other processing.

6

https://sourceware.org/systemtap/SystemTap_Beginners_Guide/targetvariables.html
https://sourceware.org/systemtap/SystemTap_Beginners_Guide/utargetvariable.html
https://sourceware.org/systemtap/SystemTap_Beginners_Guide/
https://sourceware.org/systemtap/SystemTap_Beginners_Guide/targetvariables.html

time.c

#include <stdio.h>

#include <time.h>

#define SAMPLES 10000

void func_call(struct timespec *tp) {

asm("");

clock_gettime(CLOCK_MONOTONIC , tp);

asm("");

}

void func_return(struct timespec *tp) {

asm("");

clock_gettime(CLOCK_MONOTONIC , tp);

asm("");

}

void func_total(struct timespec *tp) {

asm("");

clock_gettime(CLOCK_MONOTONIC , tp);

asm("");

}

int main() {

/* measure overhead of "clock_gettime" call */

struct timespec tp;

long nsecs[SAMPLES];

long avg;

for(int i = 0; i < SAMPLES; i++) {

asm("");

clock_gettime(CLOCK_MONOTONIC , &tp);

asm("");

nsecs[i] = tp.tv_nsec;

}

for(int i = SAMPLES -1; i > 1; i--) {

avg += nsecs[i] - nsecs[i-1];

}

avg /= SAMPLES -1;

printf("Average Clock Call Overhead: %ld ns\n", avg);

/* measure overhead of probes */

struct timespec before , in, after;

long avg_delta_total = 0, avg_delta_call = 0,

avg_delta_return = 0;

for(int i = 0; i < SAMPLES; i++) {

/* measure total function runtime */

clock_gettime(CLOCK_MONOTONIC , &before);

func_total (&in);

clock_gettime(CLOCK_MONOTONIC , &after);

avg_delta_total += after.tv_nsec - before.tv_nsec;

7

/* measure function call time */

clock_gettime(CLOCK_MONOTONIC , &before);

func_call (&in);

avg_delta_call += in.tv_nsec - before.tv_nsec;

/* measure function return time */

func_return (&in);

clock_gettime(CLOCK_MONOTONIC , &after);

avg_delta_return += after.tv_nsec - in.tv_nsec;

}

avg_delta_total /= SAMPLES;

avg_delta_call /= SAMPLES;

avg_delta_return /= SAMPLES;

printf("Average Total: %ld ns\nAverage Jump In (Call): %ld

ns\nAverage Jump Out (Return): %ld ns\n",

avg_delta_total , avg_delta_call , avg_delta_return);

return 0;

}

This program first measures the average time it takes for a clock_gettime

call. Naturally, the results will vary from machine to machine, nevertheless
we should be able to see the relative performance impact SystemTap has
on the application. The various empty inline assembler statements (asm
("")) prevent the compiler from doing any unwanted optimization (such as
function inlining).

These are the results on my machine:

$ gcc --std=gnu99 -o time time.c

$./time.c

Average Clock Call Overhead: 113 ns

Average Total: 158 ns

Average Jump In (Call): 78 ns

Average Jump Out (Return): 79 ns

Next up, we place probes at the start and end of the function calls and
observe the differences.

probes.stp

probe process.function("func_total") {}

probe process.function("func_call").call {}

probe process.function("func_return"). return {}

This stap script places probes at the beginning of the func_total function,
at the beginning of the func_call function (the .call suffix is optional and
can be omitted) and at the end of the func_return function (.return).

Because these probes are empty SystemTap will elide them by default.
To avoid this, we need to use the unoptimized mode via the -u command-line

8

switch.

$ stap -u -c ./time.c probes.stp

Average Clock Call Overhead: 83 ns

Average Total: 4200 ns

Average Jump In (Call): 4143 ns

Average Jump Out (Return): 800 ns

These measurements show us that there is a significant hit for placing
probes inside the application code. Jumping into the function took about
50 times longer and returning from it 10 times longer. Also keep in mind
that return probes are essentially placed by putting a probe at the beginning
of the function and then putting another one at the end. This means the
overhead for a return probe is the cost of “Jump In” and “Jump Out”
combined.

Nevertheless, these results are decent considering the power and flexibil-
ity SystemTap offers for inspecting code on-the-fly, as we’ve seen before.

2 Frida

Frida is a very young tracing framework for Windows, macOS, Linux, iOS,
Android and QNX. Being written in JavaScript, Python and C it is rather
high-level, which on one hand makes it very powerful and easy to use, but
also too slow for real-time performance analysis. Another disadvantage are
its dependencies (due to being written partly in JavaScript and Python).

3 LTTng

LTTng allows tracing of applications written in C, C++, Java and Python
on a Linux platform, as well as the Linux kernel itself (due to being written
in C).

It is designed from the ground up to provide low overhead tracing on
production systems and offers the possibility of recording traced events.
Additionally, these can be exported to other tools like LTTng analysis or
Babeltrace and even graphically viewed with Trace Compass, which is very
handy and exactly what one wants for performance analysis.

One downside of LTTng is it requires modification of the source code,
because auxiliary markers for entry points and the LTTng shared library
need to be loaded. While some applications (like the Linux kernel) already
come with these markers and can be used right away with LTTng, this is
not the case for our target application. However the biggest obstacle is
the additional library for LTTng, which would need to be present on every
system.

9

https://www.frida.re
https://lttng.org
https://github.com/lttng/lttng-analyses
http://diamon.org/babeltrace/
http://tracecompass.org/

	SystemTap
	Frida
	LTTng

